

RR-82-5-ONR

MAXIMUM LIKELIHOOD ESTIMATION OF ITEM RESPONSE PARAMETERS WHEN SOME RESPONSES ARE OMITTED

Frederic M. Lord

This research was sponsored in part by the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research, under Contract No. N00014-80-C-0402

Contract Authority Identification Number NR No. 150-453

Frederic M. Lord, Principal Investigator

Educational Testing Service Princeton, New Jersey

January 1982

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.

MAXIMUM LIKELIHOOD ESTIMATION OF

ITEM RESPONSE PARAMETERS WHEN

SOME RESPONSES ARE OMITTED

Frederic M. Lord

This research was sponsored in part by the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research, under Contract No. N00014-80-C-0402 Contract Authority Identification Number NR No. 150-453
Frederic M. Lord, Principal Investigator Educational Testing Service Princeton, New Jersey

January 1982

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.

TO RECIPIENT'S CATALOG NUMBER
\cup
5 тупы од невойт & релиоп соченей Technical Report
E PERFORMING ORS. REPORT NUMBER RR-82-5-ONR B CONTRACT OR GRANT NUMBER(*)
8 CONTRACT OR GRANT NUMBER(*) NO0014-80-('-0402
PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT NUMBERS NR 150-453
January 1982 NUMBER OF PAGES 14
Unclassified DECLASSIFICATION DOWNSRADING SCHEDULE
ed.
Responses
or dealing with omitted tem response theory mative model is

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
	-
	Ì
	}
	ì
	1
	-
	Ī
	Ì
	İ
	Ì
	-
	1
	ł
	1
	1
	Ĭ

Maximum Likelihood Estimation of Item Response Parameters When Some Responses Are Omitted

Abstract

Two theoretical approaches are considered for dealing with omitte!

responses. A simple modification of the usual item response theory model

leads to internal contradictions. An alternative model is suggested and

some special cases are investigated.

Acces	sion For	
	38' &T	
DTIC		$\bar{\Box}$
	om nad	17
Justi	Ciartian.	
Ry Distr	iti.****n/	·
Avnt		ិ ខែន
ist ·		,
_		
W	1	
	ì	

Maximum Likelihood Estimation of Item Response Parameters When Some Responses Are Omitted*

In item response theory, the frequency distribution of the responses of a single examine to n dichotomous items is commonly given as

$$f(u_1, ..., u_n) = \prod_{i=1}^{n} P_i^{u_i 1 - u_i}$$
(1)

where $Q_i \equiv 1 - P_i$, P_i is the probability of a correct response by the examinee to item i, and where $u_i = 0$ or 1 denotes his score on the item. When the examinee omits (fails to respond to) an item, this formula cannot be used. The purpose of this article is to explore two theoretical approaches that attempt to cope with omitted responses.

Section 1 presents some preliminary considerations. Section 2 shows that a conveniently simple application of (1) leads to internal contradictions. Section 3 considers a possible rigorous mathematical model. Sections 4 and 5 show that this model yields very reasonable results in two special cases that are sufficiently simple to be already familiar to us.

Two conclusions are reached.

A simple modification of the usual item response theory model
 does not apply when the examinee has the option of omitting or responding at random.

^{*}This work was supported in part by contract N00014-80-C-0402, project designation NR 150-453 between the Office of Naval Research and Educational Testing Service. Reproduction in whole or in part is permitted for any purpose of the United States Government.

2) A model containing five item parameters and two examinee parameters seems reasonable. Even if some of these parameters should prove difficult to estimate accurately in practical work, the model should be useful for clear thinking about omitted responses.

1. Preliminary Considerations

If test score is the number of right answers, an examinee who omits responses on a multiple-choice test necessarily lowers his expected test score. Mathematical modeling of such (usually irrational) behavior will not be attempted here.

We will deal instead with the case where the 'formula score' x - W/(A - 1) is to be used, x being the number of right answers, W the number of wrong answers, and W the number of choices per item. In this case, the examinee who wishes to maximize his expected score should not omit any items on which his chance of success is greater than 1/A. If he can do no better than a random guess on an item, his chance of success equals 1/A and his expected test score will be the same whether he omits the item or guesses at random. He may omit or guess at random, as he pleases. If an examinee is forced to respond to an item that he has omitted, his chance of success is assumed to be 1/A.

Note that P_i in (1) represents what the statistician knows about item i before it is administered to a given examinee. After the examinee has read the item, he may know the correct answer with more or less certainty, he may be misinformed on the item and thus

answer incorrectly, or he may guess at random with chance of success 1/A. One should <u>not</u> conclude in such cases that $P_{\bf i}$ is 1, or that it is 0, or that it is 1/A.

2. The Case of Equivalent Items

Items are called equivalent when they have identical $P_i \equiv P_i$ (a) $\equiv P_i$ P_i nd the numerical values of the (item) parameters defining P_i are known.

When $P_{\mathbf{i}}$ in (1) is replaced by P , the frequency distribution of the $\mathbf{u}_{\mathbf{i}}$ becomes

$$f(u_1, \dots, u_n) = P^{\sum u_i} Q^{n-\sum u_i} .$$
 (2)

Since $x \equiv \sum_{i=1}^{n} u_i$ is the number-right score, we see that when x is given, the distribution of u_i in (2) does not depend on θ .

Thus (as is well known) when all items are equivalent, x is a sufficient statistic for estimating θ . Any inference about should depend only on x. The frequency distribution of x is the familiar binomial

$$f(x) = {n \choose x} P^{x}Q^{n-x} \qquad (x = 0, 1, ..., n)$$
 (3)

Suppose now that a given examinee will either omit a certain item or else choose his response at random. According to the model, if he chooses his response at random, his number-right score x will be distributed as in (2).

Suppose, on the other hand, he decides to omit this one item (and r others). Denote his number-right score on the remaining n-1 items by k ($k=0,\ldots,n-1$). Let g(k) denote the frequency distribution of k for this examinee. We hope to find the mathematical form of g(k) so that we can use it to get a maximum likelihood estimator of $\frac{1}{2}$.

Since his probability of success on the omitted items is $C \equiv 1/A$, there is a mathematical relation between f() and g():

If the f() are considered as known, the g() as unknowns to be determined, we have here n+1 linear equations in n unknowns. Written in matrix form, (4) becomes

$$\begin{bmatrix} 1 & \cdots & C & & & & & \\ C & 1 & -C & & & & \\ & & C & 1 & -C & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

It seems reasonable that g(k) determined from (4) or (5) provides the likelihood function from which the examinee's θ may be estimated by maximum likelihood.

A standard investigation (for example, Aitken, 1944, Section 30) shows that these n+1 linear equations have no solution (are mutually inconsistent) unless P=C. Thus, excluding the uninteresting case where P=C, when f() is given by (3) no possible frequency distribution g(k) (for the examinee's responses to non-omitted items) can exist.

Model (1) can be applied by replacing omitted responses by random responses. This introduces additional error into the data, however. If omits are not replaced by random responses, the usual item response function model (1) cannot fit the data. We have only proved this for tests composed of equivalent items, but the conclusion is presumably general, especially since any test may contain a few items that are statistically equivalent.

3. A Model for Response or Omission

The discussion in Section 1 suggests the following model. Let $R_{\bf i}({}^{\rm t}{}_{\bf a})$ denote the probability that examinee a , at ability level ${}^{\rm t}{}_{\bf a}$, feels no preference for any of the available responses to item ${\bf i}$: if he responds to item ${\bf i}$, he will respond effectively at random. For brevity, we will say that $R_{\bf i}({}^{\rm t}{}_{\bf a})$ is the probability of (total) ignorance on item ${\bf i}$. It may be thought of as the proportion of examinees at ability level ${}^{\rm t}{}_{\bf a}$ who are ignorant on item ${\bf i}$.

Let $P_i(\frac{\partial}{a})$ denote the conditional probability that examinee a will respond correctly to item i given that he is not ignorant. Thus

$$P_{i}(\hat{a}) \equiv Prob(u_{ia} = 1) not ignorant)$$
.

If the examinee omits item i, we will denote this by $w_{ia} = 1$; if he responds to item i, $w_{ia} = 0$. Let ω_a denote the probability that examinee a will omit an item of which he is ignorant:

$$\omega_a \equiv \text{Prob}(w_{ia} = 1 | \text{ignorance})$$
.

Since we are concerned with a single examinee, we will drop the subscript a. As before, let $C \equiv 1/A$ denote the probability of success by random guessing:

$$C = Prob(u_i = 1 | w_i = 0, ignorance)$$
.

Let a bar above a symbol denote its complement, for example, $\bar{P}_i \ \equiv \ 1 \ - \ P_i \ .$

There are three exhaustive and mutually exclusive events, denoted by ($w_i = 1$), ($w_i = 0$, $u_i = 1$), and ($w_i = 0$, $u_i = 0$). The unconditional probability of omitting is clearly

$$Prob(w_{i} = 1) = \omega R_{i} . \qquad (6)$$

A correct answer occurs with probability $\mathbb{L}C$ when the examinee is ignorant and with probability $P_{\underline{i}}$ when he is not ignorant, so

$$Prob(u_i = 1, w_i = 0) = R_i C + \bar{R}_i P_i$$
 (7)

Similarly,

$$Prob(u_{i} = 0, w_{i} = 0) = R_{i}\overline{\omega}C + \overline{R}_{i}\overline{P}_{i} . \qquad (8)$$

The right sides of (6), (7), and (8) sum to 1, as they should.

The joint distribution of \mathbf{w}_i and \mathbf{u}_i (i = 1,2,..., \mathbf{n}) may be written

$$L = \prod_{i=1}^{n} (R_{i}\omega)^{w_{i}} (P_{i}\overline{R}_{i} + C\overline{L}R_{i})^{u_{i}\overline{w}_{i}} (\overline{P}_{i}\overline{R}_{i} + \overline{C}\overline{\omega}R_{i})^{\overline{u}_{i}\overline{w}_{i}}$$
(9)

for the permissible values of (w_i, u_i) . The log likelihood is then

$$\log L \approx \sum_{i=1}^{n} \left[w_{i} (\log R_{i} + \log \omega) + u_{i} \overline{w}_{i} \log(P_{i} \overline{R}_{i} + C \overline{\omega} R_{i}) + \overline{u}_{i} \overline{w}_{i} \log(\overline{P}_{i} \overline{R}_{i} + \overline{C} \overline{\omega} R_{i}) \right] . \tag{10}$$

Equations for maximum likelihood estimation can be written down from (10).

The following is suggested as a possible, plausible implementation of this model:

- The parameter _ varies across examinees but not across items.
- 2. $P_i \equiv P_i(\cdot)$ is a three-parameter logistic or normal ogive function of \cdot with positive slope.
- 3. $R_i \equiv R_i(\cdot)$ has the same general mathematical form as $P_i(\cdot)$ but different parameters; in particular, the slope is negative, the lower asymptote is zero.

The foregoing will be assumed in the further discussion of this model.

There are five item parameters in the plausible implementation (three for P, two for R) and two examinee parameters (a and ...). It may not always be practical to estimate this many item parameters. In any case, the model is an aid to clear thinking about the proper handling of omitted responses.

Some special cases of the model are considered in the remaining sections. The purpose is to gain further insight into the implications of the model. These special cases are <u>not</u> recommended for practical use.

4. Special Case: No Omitting

When $\omega = 0$, we must have $w_i = 0$, and (9) becomes

$$f(u_1, ..., u_n) = \prod_{i=1}^{n} p_i^{i} (1 - p_i)^{1-u_i}$$
(11)

where

$$P_{i} = P_{i} \overline{R}_{i} + CR_{i} \qquad (12)$$

Since (11) has the same form as (1), we have here the usual item response theory model for dichotomous items, omits being barred, except that now the item response function has the special form given by (12).

This item response function $p_i(^n)$ need not be a monotonic increasing function of n . The lower asymptote of $p_i(^n)$ is C; if c_i , the lower asymptote of $P_i(^n)$, is less than C, the probability of success may decrease at first as n increases, before finally increasing to the upper asymptote at 1. This is a desirable feature: Examinees with sufficiently low n can only guess randomly, examinees with higher n may be misinformed and may do less well than a random guess. Model (11) - (12) was suggested by Samejima (1979).

5. Special Case: Equivalent Items, Knowledge or Random Guessing

Under the knowledge-or-random-guessing assumption, the examinee either knows the answer to a particular item or guesses at random or omits it. For purposes of the present model, the assumption is represented by the case where $P_{\bf i}(\cdot;)=1$ for all $\cdot:$.

When the test is composed of equivalent items, the subscript is can be dropped from functions of parameters. Denote the number of omitted items by $\mathbf{w} \in \mathbb{Z}_{\mathbf{i}} \mathbf{w}_{\mathbf{i}}$, the number of wrong answers by $\mathbf{w} \in \mathbb{Z}_{\mathbf{i}} \bar{\mathbf{u}}_{\mathbf{i}} \bar{\mathbf{w}}_{\mathbf{i}}$.

The log likelihood (10) is now

$$\log L = w \log R + w \log \omega + x \log(\overline{R} + C\overline{\omega}R)$$

$$+ W(\log \overline{C} + \log \overline{\omega} + \log R) \qquad (13)$$

If we differentiate this with respect to ω and set the result equal to zero, we obtain the likelihood equation

$$\frac{\mathbf{w}}{\hat{\omega}} - \frac{\mathbf{C} \times \hat{\mathbf{R}}}{\hat{\mathbf{R}} + \mathbf{C} \hat{\omega} \hat{\mathbf{R}}} - \frac{\mathbf{W}}{2} = 0 \qquad . \tag{14}$$

where $\hat{\omega}$ and \hat{R} denote maximum likelihood estimators.

The likelihood equation for $\hat{\psi}$ is seen to be

$$\frac{3 \log L}{3v} = \frac{4 \log L}{3R} \frac{3R}{38} = 0 \quad .$$

or simply 3 log L/3R = 0 . It is convenient for some purposes to think of R itself as the ability parameter, since R \equiv R (\odot) is a one-to-one monotonic transformation of the parameter \odot .

The remaining likelihood equation is thus seen to be

$$\frac{\mathbf{w}}{\hat{\mathbf{R}}} + \frac{\mathbf{x}(-1 + \hat{\mathbf{C}\omega})}{\hat{\mathbf{R}} + \hat{\mathbf{C}\omega}\hat{\mathbf{R}}} + \frac{\mathbf{W}}{\hat{\mathbf{R}}} = 0 \qquad . \tag{15}$$

The maximum likelihood estimators of ω and of θ (or R) are the roots of (14) and (15).

Rewrite (14) and (15):

$$\frac{\mathbf{w}}{\hat{\omega}} - \frac{\mathbf{W}}{\hat{\omega}} = \frac{\mathbf{C}\mathbf{x}}{\mathbf{C}\hat{\omega} + \hat{\mathbf{R}}/\hat{\mathbf{R}}} , \tag{16}$$

$$w + W = \frac{x(1 - C\widehat{\omega})}{C\widehat{\omega} + \widehat{R}/\widehat{R}} . \tag{17}$$

Eliminating \hat{R} from these two equations, we have

$$w + W = \left(\frac{w}{\hat{\omega}} - \frac{W}{\hat{\omega}}\right) \left(\frac{1}{C} - \frac{\hat{\omega}}{\omega}\right)$$
.

Clearing fractions, we find the maximum likelihood estimator

$$\hat{\omega} = \frac{w}{w + W/(1 - C)} \quad . \tag{18}$$

Solve (17) to obtain

$$\frac{\hat{R}}{\hat{R}} = \frac{x(1 - \hat{C\omega})}{w + W} - \hat{C\omega},$$

$$\frac{1}{R} = \frac{n}{n-x} (1 - C\overline{\omega}) .$$

Using (18),

$$\hat{R} = \frac{1}{n} \left(w + \frac{W}{1 - C} \right)$$
 (19)

From (18) and (19),

$$\hat{u} = \frac{w}{nR} \quad , \tag{20}$$

a very reasonable result. It says that the estimated proportion of omits equals the actual number of omits divided by the estimated number of items on which the examinee is totally ignorant. Similarly, from (19),

$$n\tilde{R} = x - \frac{W}{A - 1} , \qquad (21)$$

where A \equiv 1/C . This shows that the estimated number of items known by the examinee is given by the usual 'correction for guessing' formula.

References

- Aitken, A. C. <u>Determinants and matrices</u> (3rd ed.). New York:

 Interscience Publishers, 1944.
- Samejima, F. A new family of models for the multiple-choice item

 (Research Report 79-4). Knoxville, Tenn.: Department of

 Psychology, University of Tennessee, 1979.

DISTRIBUTION LIST

Navy

- 1 Dr. Ed Aiken
 Navy Personnel R & D Center
 San Diego, CA 92152
- 1 Dr. Meryl S. Baker
 Navy Personnel R & D Center
 San Diego, CA 92152
- l Dr. Jack R. Borsting
 Provost and Academic Dean
 U.S. Naval Postgraduate School
 Monterey, CA 93940
- Chief of Naval Education and Training Liason Office Air Force Human Resource Laboratory Flying Training Division Williams Air Force Base, AZ 85224
- 1 CDR Mike Curran
 Office of Naval Research
 800 North Quincy Street
 Code 270
 Arlington, VA 22217
- 1 Dr. Pat Federico
 Navy Personnel R & D Center
 San Diego, CA 92152
- 1 Mr. Paul Foley
 Navy Personnel R & D Center
 San Diego, CA 92152
- 1 Dr. John Ford
 Navy Personnel R & D Center
 San Diego, CA 92152

- Dr. Patrick R. Harrison
 Psychology Course Director
 Leadership and Law Department (7b)
 Division of Professional Development
 U.S. Naval Academy
 Annapolis, MD 21402
- Dr. Norman J. Kerr
 Chief of Naval Technical Training
 Naval Air Station Memphis (75)
 Millington, TN 38054
- l Dr. William L. Maloy Principal Civilian Advisor for Education and Training Naval Training Command, Code OOA Pensacola, FL 32508
- Dr. James McBride
 Navy Personnel R & D Center
 San Diego, CA 92152
- 1 Mr. William Nordbrock
 Instructional Program Development
 Building 90
 NET-PDCD
 Great Lakes NTC, IL 60088
- Library, Code P201L
 Navy Personnel R & D Center
 San Diego, CA 92152

- 6 Commanding Officer Naval Research Laboratory Code 2627 Washington, DC 20390
- Psychologist
 ONR Branch Office
 Building 114, Section D
 666 Summer Street
 Boston, MA 02210
- 1 Office of Naval Research
 Code 437
 800 North Quincy Street
 Arlington, VA 22217
- 5 Personnel and Training Research Programs Code 458 Office of Naval Research Arlington, VA 22217
- Psychologist
 ONR Branch Office
 536 S. Clark Street
 Chicago, IL 60605
- 1 Psychologist ONR Branch Office 1030 East Green Street Pasadena, CA 91101
- Office of the Chief of Naval Operations Research Development and Studies Branch OP-115 Washington, DC 20350
- 1 The Principal Deputy Assistant Secretary of the Navy (MRA&L) 4E780, The Pentagon Washington, DC 22203

- Director, Research and Analysis Division Plans and Policy Department Navy Recruiting Command 4015 Wilson Boulevard Arlington, VA 22203
- 1 Mr. Arnold Rubenstein
 Office of Naval Technology
 800 N. Quincy Street
 Arlington, VA 22217
- 1 Dr. Worth Scanland, Director
 Research, Development, Test
 and Evaluation
 N-5
 Naval Education and Training Command
 NAS
 Pensacola, FL 32508
- 1 Dr. Robert G. Smith
 Office of Chief of Naval Operations
 OP-987H
 Washington, DC 20350
- 1 Dr. Alfred F. Smode
 Training Analysis and Evaluation Group
 Department of the Navy
 Orlando, FL 32813
- 1 Dr. Richard Sorensen Navy Personnel R & D Center San Diego, CA 92152
- 1 Mr. J. B. Sympson
 Naval Personnel R & D Center
 San Diego, CA 92152
- 1 Dr. Ronald Weitzman
 Code 54 WZ
 Department of Administrative Services
 U.S. Naval Postgraduate School
 Monterey, CA 93940

- 1 Dr. Robert Wisher
 Code 309
 Navy Personnel R & D Center
 San Diego, CA 92152
- l Dr. Martin F. Wiskoff
 Navy Personnel R & D Center
 San Diego, CA 92152
- 1 Mr. John H. Wolfe
 Code P310
 U.S. Navy Personnel Research
 and Development Center
 San Diego, CA 92152
- 1 Mr. Ted M. I. Yellen
 Technical Information Office
 Code 201
 Navy Personnel R & D Center
 San Diego, CA 92152

Army

- 1 Technical Director U.S. Army Research Institute for the Behavioral and Social Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 Dr. Myron Fisch1
 U.S. Army Research Institute for the
 Social and Behavioral Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- 1 Dr. Michael Kaplan
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333

- 1 Dr. Milton S. Katz
 Training Technical Area
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- i Mr. Harold F. O'Neil, Jr. Attn: PERI-OK Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333
- 1 LTC Michael Plummer
 Chief, Leadership and Organizational
 Effectiveness Division
 Office of the Deputy Chief of Staff
 for Personnel
 Department of the Army
 The Pentagon
 Washington, DC 20301
- I Dr. James L. Raney
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- 1 Mr. Robert Ross U.S. Army Research Institute for the Social and Behavioral Sciences 5001 Eisenhower Avenue Alexandria, VA 22333
- Dr. Robert Sasmor
 U.S. Army Research Institute for
 the Social and Behavioral Sciences
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- 1 Commandant
 U.S. Army Institute of Administration
 Attn: Dr. Sherrill
 Ft. Benjamin Harrison, IN 46256
- 1 Dr. Joseph Ward
 U.S. Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333

Air Force

- 1 Air Force Human Resources Laboratory
 AFHRL/MPD
 Brooks Air Force Base, TX 78235
- U.S. Air Force Office of Scientific Research Life Sciences Directorate Bolling Air Force Base Washington, DC 20332
- 1 Dr. Earl A. Alluisi
 HQ, AFHRL (AFSC)
 Brooks Air Force Base, TX 78235
- Dr. Genevieve Haddad
 Program Manager
 Life Sciences Directorate
 AFOSR
 Bolling Air Force Base
 Washington, DC 20332
- 1 Dr. David R. Hunter
 AFHRL/MOAM
 Brooks Air Force Base, TX 78235
- Research and Measurement Division Research Branch, AFMPC/MPCYPR Randolph Air Force Base, TX 78148
- 1 Dr. Malcolm Ree
 AFHRL/MP
 Brooks Air Force Base, TX 78235

Marines

1 Dr. H. William Greenup Education Advisor (E031) Education Center, MCDEC Quantico, VA 22134

- 1 Director, Office of Manpower
 Utilization
 HQ, Marine Corps (MPU)
 BCB, Building 2009
 Quantico, VA 22134
- Special Assistant for Marine
 Corps Matters
 Code 100M
 Office of Naval Research
 800 N. Quincy Street
 Arlington, VA 22217
- 1 MAJ Michael L. Patrow, USMC
 Headquarters, Marine Corps
 Code MPI-20
 Washington, DC 20380
- 1 Dr. A. L. Slafkosky
 Scientific Advisor
 Code RD-1
 HQ, U.S. Marine Corps
 Washington, DC 20380

Coast Guard

- 1 Chief, Psychological Research Branch U.S. Coast Guard (G-P-1/2/TP42) Washington, DC 20593
- 1 Mr. Thomas A. Warm
 U.S. Coast Guard Institute
 P.O. Substation 18
 Oklahoma City, OK 73169

Other DoD

1 DARPA 1400 Wilson Boulevard Arlington, VA 22209

- 12 Defense Technical Information Center
 Cameron Station, Building 5
 Attn: TC
 Alexandria, VA 22314
- Dr. William Graham
 Testing Directorate
 MEPCOM/MEPCT-P
 Ft. Sheridan, IL 60037
- Director, Research and Data
 OASD (MRA&L)
 3B919, The Pentagon
 Washington, DC 20301
- Military Assistant for Training and Personnel Technology Office of the Under Secretary of Defense for Research and Engineering Room 3D129, The Pentagon Washington, DC 20301
- 1 Dr. Wayne Sellman
 Office of the Assistant Secretary
 of Defense (MRA&L)
 2B269 The Pentagon
 Washington, DC 20301

Civil Government

- 1 Mr. Richard McKillip
 Personnel R & D Center
 Office of Personnel Management
 1900 E Street, NW
 Washington, DC 20415
- 1 Dr. Andrew R. Molnar Science Education Development and Research National Science Foundation Washington, DC 20550

- Dr. H. Wallace Sinaiko Program Director Manpower Research and Advisory Services Smithsonian Institution 801 North Pitt Street Alexandria, VA 22314
- 1 Dr. Vern W. Urry
 Personnel R & D Center
 Office of Personnel Management
 1900 E Street, NW
 Washington, DC 20415
- Dr. Joseph L. Young, Director Memory and Cognitive Processes National Science Foundation Washington, DC 20550

Non-Government

- 1 Dr. James Algina
 University of Florida
 Gainesville, FL 32611
- 1 Dr. Erling B. Andersen Department of Statistics Studiestraede 6 1455 Copenhagen DENMARK
- Psychological Research Unit
 Department of Defense (Army Office)
 Campbell Park Offices
 Canberra, ACT 2600
 AUSTRALIA
- 1 Dr. Isaac Bejar Educational Testing Service Princeton, NJ 08541

- 1 CAPT J. Jean Belanger
 Training Development Division
 Canadian Forces Training System
 CFTSHQ, CFB Trenton
 Astra, Ontario KOK 1BO
 CANADA
- Dr. Menucha Birenbaum
 School of Education
 Tel Aviv University
 Tel Aviv, Ramat Aviv 69978
 ISRAEL
- Dr. Werner Birke
 DezWPs im Streitkraefteamt
 Postfach 20 50 3
 D-5300 Bonn 2
 WEST GERMANY
- Dr. R. Darrell Bock
 Department of Education
 University of Chicago
 Chicago, IL 60637
- 1 Liaison Scientists
 Office of Naval Research
 Branch Office, London
 Box 39
 FPO, NY 09510
- Dr. Robert Brennan
 American College Testing Programs
 P.O. Box 168
 Iowa City, IA 52240
- 1 Dr. C. Victor Bunderson
 WICAT Inc.
 University Plaza, Suite 10
 1160 S. State Street
 Orem, UT 84057
- 1 Dr. John B. Carroll
 Psychometric Laboratory
 University of North Carolina
 Davie Hall 013A
 Chapel Hill, NC 27514

- 1 Charles Myers Library Livingstone House Livingstone Road Stratford London E15 2LJ ENGLAND
- 1 Dr. Kenneth E. Clark
 College of Arts and Sciences
 University of Rochester
 River Compus Station
 Rochester, NY 14627
- 1 Dr. Norman Cliff
 Department of Psychology
 University of Southern California
 University Park
 Los Angeles, CA 90007
- Dr. William E. Coffman
 Director, Iowa Testing Programs
 334 Lindquist Center
 University of Iowa
 Iowa City, IA 52242
- 1 Dr. Meredith P. Crawford American Psychological Association 1200 17th Street, N Washington, DC 20036
- 1 Dr. Fritz Drasgow
 Yale School of Organization and
 Management
 Yale University
 Box 1A
 New Haven, CT 06520
- 1 Dr. Mike Durmeyer
 Instructional Program Development
 Building 90
 NET-PDCD
 Great Lakes NTC, IL 60088
- 1 ERIC Facility-Acquisitions
 4833 Rugby Avenue
 Bethesda, MD 20014

- 1 Dr. A. J. Eschenbrenner
 Dept. E422, Bldg. 81
 McDonald Douglas Astronautics Co.
 P.O. Box 516
 St. Louis, MO 63166
- 1 Dr. Benjamin A. Fairbank, Jr.
 McFann-Gray and Associates, Inc.
 5825 Callaghan
 Suite 225
 San Antonio, TX 78228
- I Dr. Leonard Feldt Lindquist Center for Measurement University of Iowa Iowa City, IA 52242
- 1 Dr. Richard L. Ferguson
 The American College Testing Program
 P.O. Box 168
 Iowa City, IA 52240
- Dr. Victor Fields
 Department of Psychology
 Montgomery College
 Rockville, MD 20850
- 1 Univ. Prof. Dr. Gerhard Fischer
 Psychologisches Institut der
 Universitat Wien
 Liebiggasse 5/3
 A 1010 Wien
 AUSTRIA
- Prof. Donald Fitzgerald University of New England Armidale, New South Wales 2351 AUSTRALIA
- Dr. Edwin A. Fleishman
 Advanced Research Resources Organization
 Suite 900
 4330 East West Highway
 Washington, DC 20014

- Dr. John R. Frederiksen
 Bolt, Beranek, and Newman
 50 Moulton Street
 Cambridge, MA 02138
- 1 Dr. Robert Glaser
 LRDC
 University of Pittsburgh
 3939 O'Hara Street
 Pittsburgh, PA 15213
- 1 Dr. Daniel Gopher
 Industrial and Management Engineering
 Technion-Israel Institute of
 Technology
 Haifa
 ISRAEL
- 1 Dr. Bert Green
 Department of Psychology
 Johns Hopkins University
 Charles and 34th Streets
 Baltimore, MD 21218
- 1 Dr. Ron Hambleton
 School of Education
 University of Massachusetts
 Amherst, MA 01002
- 1 Dr. Delwyn Harnisch University of Illinois 242b Education Urbana, IL 61801
- l Dr. Chester Harris School of Education University of California Santa Barbara, CA 93106
- Dr. Lloyd Humphreys
 Department of Psychology
 University of Illinois
 Champaign, IL 61820

- Library
 HumRRO/Western Division
 27857 Berwick Drive
 Carmel, CA 93921
- Dr. Steven Hunka
 Department of Education
 University of Alberta
 Edmonton, Alberta
 CANADA
- 1 Dr. Jack Hunter 2122 Coolidge Street Lansing, MI 48906
- 1 Dr. Huynh Huynh
 College of Education
 University of South Carolina
 Columbia, SC 29208
- Prof. John A. Keats
 Department of Psychology
 University of Newcastle
 Newcastle, New South Wales 2308
 AUSTRALIA
- 1 Mr. Jeff Kelety
 Department of Instructional Technology
 University of Southern Carifornia
 Los Angeles, CA 90007
- Dr. Michael Levine
 Department of Educational Psychology
 210 Education Building
 University of Illinois
 Champaign, IL 61801
- 1 Dr. Charles Lewis Faculteit Sociale Wetenschappen Rijksuniversiteit Groningen Oude Boteringestraat 23 9712GC Groningen NETHERLANDS

- 1 Dr. Robert Linn
 College of Education
 University of Illinois
 Urbana, IL 61801
- Dr. James Lumsden
 Department of Psychology
 University of Western Australia
 Nedlands, Western Australia 6009
 AUSTRALIA
- 1 Dr. Gary Marco
 Educational Testing Service
 Princeton, NJ 08541
- Dr. Scott Maxwell
 Department of Psychology
 University of Houston
 Houston, TX 77004
- 1 Dr. Samuel T. Mayo
 Loyola University of Chicago
 820 North Michigan Avenue
 Chicago, IL 60611
- Prof. Jason Millman
 Department of Education
 Stone Hall
 Cornell University
 Ithaca, NY 14853
- l Dr. Melvin R. Novick
 356 Lindquist Center for Measurement
 University of Iowa
 Iowa City, IA 52242
- 1 Dr. Jesse Orlansky
 Institute for Defense Analyses
 400 Army Navy Drive
 Arlington, VA 22202
- Dr. Wayne M. Patience
 American Council on Education
 GED Testing Service, Suite 20
 One Dupont Circle, NW
 Washington, DC 20036

- 1 Dr. James A. Paulson
 Portland State University
 P.O. Box 751
 Portland, OR 97207
- 1 Mr. Luigi Petrullo
 2431 North Edgewood Street
 Arlington, VA 22207
- 1 Dr. Diane M. Ramsey-Klee
 R-K Research and System Design
 3947 Ridgemont Drive
 Malibu, CA 90265
- 1 Mr. Minrat M. L. Rauch
 P II 4
 Bundesministerium der Verteidigung
 Postfach 1328
 D-53 Bonn 1
 GERMANY
- I Dr. Mark D. Reckase
 Educational Psychology Department
 University of Missouri-Columbia
 4 Hill Hall
 Columbia, MO 65211
- Dr. Andrew Rose
 American Institutes for Research
 1055 Thomas Jefferson St., NW
 Washington, DC 20007
- Dr. Leonard L. Rosenbaum, Chairman
 Department of Psychology
 Montgomery College
 Rockville, MD 20850
- 1 Dr. Ernst Z. Rothkopf Bell Laboratories 600 Mountain Avenue Murray Hill, NJ 07974
- 1 Dr. Lawrence Rudner 403 Elm Avenue Takoma Park, MD 20012

- 1 Dr. J. Ryan
 Department of Education
 University of South Carolina
 Columbia, SC 29208
- Prof. Fumiko Samejima
 Department of Psychology
 University of Tennessee
 Knoxville, TN 37916
- Dr. Kazuo Shigemasu
 University of Tohoku
 Department of Educational Psychology
 Kawauchi, Sendai 980
 JAPAN
- Dr. Edwin Shirkey
 Department of Psychology
 University of Central Florida
 Orlando, FL 32816
- Dr. Robert Smith
 Department of Computer Science
 Rutgers University
 New Brunswick, NJ 08903
- 1 Dr. Richard Snow School of Education Stanford University Stanford, CA 94305
- I Dr. Robert Sternberg
 Department of Psychology
 Yale University
 Box 11A, Yale Station
 New Haven, CT 06520
- 1 Dr. Patrick Suppes
 Institute for Mathematical Studies in
 the Social Sciences
 Stanford University
 Stanford, CA 94305

- Dr. Hariharan Swaminathan
 Laboratory of Psychometric and
 Evaluation Research
 School of Education
 University of Massacuusetts
 Amherst, MA 01003
- 1 Dr. Kikumi Tatsuoka
 Computer Based Education Research
 Laboratory
 252 Engineering Research Laboratory
 University of Illinois
 Urbana, IL 61801
- Dr. David Thissen
 Department of Psychology
 University of Kansas
 Lawrence, KS 66044
- Dr. Robert Tsutakawa
 Department of Statistics
 University of Missouri
 Columbia, MO 65201
- 1 Dr. Howard Wainer Educational Testing Service Princeton, NJ 08541
- l Dr. David J. Weiss N660 Elliott Hall University of Minnesota 75 East River Road Minneapolis, MN 55455
- 1 Dr. Susan E. Whitely Psychology Department University of Kansas Lawrence, KS 66044
- 1 Dr. Wolfgang Wildgrube Streitkraefteamt Box 20 50 03 D-5300 Bonn 2 WEST GERMANY

